![]() |
![]() |
|
Плоскость. Представление о плоскости дает гладкая поверхность стола или стены. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны. |
![]() |
На рисунках плоскости изображаются в виде параллелограмма или в виде произвольной области и обозначаются греческими буквами α, β, γ и т.д.
Точки А и В лежат в плоскости β (плоскость β проходит через эти точки), а точки M, N, P не лежат в этой плоскости. Коротко это записывают так: А ∈ β, B ∈ β, ![]() |
|
Аксиома 1.
Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна. |
|
Аксиома 2. |
|
Из аксиомы 2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки. Если прямая и плоскость имеют одну общую точку, то говорят, что они пересекаются. |
|
Аксиома 3. В таком случае говорят, плоскости пересекаются по прямой. Пример: пересечение двух смежных стен, стены и потолка комнаты. |
Теорема 1. Через прямую a и не лежащую на ней точку А проходит плоскость, и притом только одна. |
|
Теорема 2.
|
![]() |
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Теорема о параллельных прямых. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна. |
|
Лемма о пересечении плоскости параллельными прямыми. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость. |
|
Теорема о трех прямых в пространстве. |
|
Параллельность прямой и плоскости
Прямая и плоскость называются параллельными, если они не имеют общих точек.
Признак параллельности прямой и плоскости
|
|
Теорема. Теорема. |
|
![]() |
![]() |
|
Пересекающиеся прямые: |
Параллельные прямые: |
Скрещивающиеся прямые: |
Параллельность плоскостей Две плоскости называются параллельными, если они не пересекаются, т.е. не имеют ни одной общей точки. α∥β. |
![]() |
Признак параллельности двух плоскостей
Теорема. |
![]() |
Свойства параллельных плоскостей
Вели α∥β и они пересекаются с γ, то а∥b. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. |
Если α∥β и AB∥CD, то АВ = CD. |
![]() |
вернуться на страницу "Математика" | ![]() |
© Александр Коваль 2004-2016 |
|